Maximization of Approximately Submodular Functions

نویسندگان

  • Thibaut Horel
  • Yaron Singer
چکیده

We study the problem of maximizing a function that is approximately submodular under a cardinality constraint. Approximate submodularity implicitly appears in a wide range of applications as in many cases errors in evaluation of a submodular function break submodularity. Say that F is ε-approximately submodular if there exists a submodular function f such that (1−ε)f(S) ≤ F (S) ≤ (1+ε)f(S) for all subsets S. We are interested in characterizing the query-complexity of maximizing F subject to a cardinality constraint k as a function of the error level ε > 0. We provide both lower and upper bounds: for ε > n−1/2 we show an exponential query-complexity lower bound. In contrast, when ε < 1/k or under a stronger bounded curvature assumption, we give constant approximation algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating submodular functions everywhere

Submodular functions are a key concept in combinatorial optimization. Algorithms that involve submodular functions usually assume that they are given by a (value) oracle. Many interesting problems involving submodular functions can be solved using only polynomially many queries to the oracle, e.g., exact minimization or approximate maximization. In this paper, we consider the problem of approxi...

متن کامل

Differentiable Submodular Maximization

We consider learning of submodular functions from data. These functions are important in machine learning and have a wide range of applications, e.g. data summarization, feature selection and active learning. Despite their combinatorial nature, submodular functions can be maximized approximately with strong theoretical guarantees in polynomial time. Typically, learning the submodular function a...

متن کامل

Submodular Function Minimization and Maximization in Discrete Convex Analysis

This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...

متن کامل

Constrained Maximization of Non-Monotone Submodular Functions

The problem of constrained submodular maximization has long been studied, with near-optimal results known under a variety of constraints when the submodular function is monotone. The case of nonmonotone submodular maximization is not as well understood: the first approximation algorithms even for unconstrainted maximization were given by Feige et al. [FMV07]. More recently, Lee et al. [LMNS09] ...

متن کامل

Maximization of Submodular Set Functions

In this technical report, we aim to give a simple yet detailed analysis of several various submodular maximization algorithms. We start from analyzing the classical greedy algorithm, firstly discussed by Nemhauser et al. (1978), that guarantees a tight bound for constrained maximization of monotonically submodular set functions. We then continue by discussing two randomized algorithms proposed ...

متن کامل

Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms

DR-submodular continuous functions are important objectives with wide real-world applications spanning MAP inference in determinantal point processes (DPPs), and mean-field inference for probabilistic submodular models, amongst others. DR-submodularity captures a subclass of non-convex functions that enables both exact minimization and approximate maximization in polynomial time. In this work w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016